UCLA Technology Development Group

UCLA Innovation Fund Therapeutic Track Portfolio Update Newsletter

June 2020

UCLA Innovation Fund #1701:

A Platform for Spatiotemporal Control of Drug Delivery

ACHIEVEMENTS TO DATE

- In vivo biocompatibility and biodistribution
- Visualization and externally controlled release of cargo *ex vivo*

UPCOMING MILESTONES

• *In vivo* proof of concept in KPC murine pancreatic cancer model

Problem

 Limited ability to target therapeutics to diseased tissue increases chance of untoward effects in normal tissue

- e.g., systemic toxicity of chemotherapy

- Mesoporous silica nanoparticles (MSNs) loaded with therapeutic cargo of choice, that only release cargo upon stimulation
- HIFU (high intensity focused ultrasound) for externally controlled cargo release
- Incorporation of dual-contrast MRI materials allows real-time imaging of MSNs and diseased tissue

UCLA Innovation Fund #1705:

Next-Generation Selective Estrogen Receptor Degrader

ACHIEVEMENTS TO DATE

- Novel SERDs augment PD-L1 inhibitors to block tumor growth *in vivo*
- Preliminary *in vitro* ADME and tox data collected for top SERD compound

UPCOMING MILESTONES

- Eurofins SafetyScreen
- Formulation development
- In vivo PK

Problem

- Patients with ER+ breast cancer commonly develop resistance to ER antagonists or estrogen deprivation
- Faslodex is an approved selective ER down-regulator (SERD), but has poor bioavailability

Solution

- Leverage steroid backbone to design potent SERDs, but modify for bioavailability and elimination of agonist effects
- Orally available lead compound shows enhanced *in vivo* tumor reduction and limits estrogen-induced MDSC expansion that can foster immune escape

Dist. Professor,

Chemistry

3

Professor,

Chemistry &

Biochemistry

UCLA Innovation Fund #1802:

NPEPPS Enhancers for Tau-Induced Neurodegeneration

ACHIEVEMENTS TO DATE

- SAR ongoing
 - Novel compounds generated with improved oral availability and CNS penetration

UPCOMING MILESTONES

In vivo POC in mouse model of human tauopathy (hTau.P301S)

Problem

- >5M US patients affected by Alzheimer's Disease (AD) and other tau-associated neurodegenerative diseases (e.g., frontotemporal dementia, progressive supranuclear palsy)
- β-amyloid-targeting treatments have not lived up to expectations

UCLA Innovation Fund #1803:

Novel Excipient for Biotherapeutics Stabilization

ACHIEVEMENTS TO DATE

- Conjugated polymer improves insulin PK; does not alter PK as excipient
- No evidence of acute toxicity in vivo
- Lack of immune response (alone) and hapten effect (with ovalbumin) in mice

UPCOMING MILESTONES

- In vivo biodistribution (PET study)
- Effect of excipient on viscosity of an antibody solution

Problem

- Antibodies require cold-storage for stability, which adds cost and creates logistical supply chain challenges
- PEG is immunogenic in some patients, which hinders efficacy and can cause adverse sideeffects

UCLA Innovation Fund #1804:

Small Molecules Targeting RNA Regulators in Cancer Stem Cells

ACHIEVEMENTS TO DATE

- Composition of matter IP generated
- Lead identification in progress for LIN28B inhibitor program

UPCOMING MILESTONES

- Lead ID
- Evaluating POC model

Problem

- Chemotherapy harms healthy tissue and quiescent cancer stem cells (CSCs) survive
- Single-target-directed therapy harms healthy stem cells; CSCs evolve and evade selective pressure of targeted therapy

UCLA Innovation Fund #1805:

Estrogen Receptor Ligands to Treat Multiple Sclerosis

ACHIEVEMENTS TO DATE

- New ER-beta ligands generated
- Pilot PK study in progress

UPCOMING MILESTONES

• Formulation development to solubilize compounds in a more suitable vehicle for *in vivo* dosing in progress

Problem

- >2.3M patients affected WW by Multiple Sclerosis (MS)
- Current treatment regimens are anti-inflammatory, but fail to reverse cognitive impairment or stimulate remyelination

Solution

Development Group

- Mimic aspects of late-stage pregnancy, where natural disease remission is well-documented (attributed to ER-beta ligand)
- NCEs generated (ER-beta agonists) with greater CNS penetration and persistence

Molecular Genetics 8

UCLA Innovation Fund #1814:

Acoustofluidic Platform for High Throughput Cell Transfection

ACHIEVEMENTS TO DATE

• Initial POC data demonstrating successful transfection of primary human cells published in *PNAS*

UPCOMING MILESTONES

 Optimization of transfection efficiencies based on cargo and cell type while maintaining high cell viability

Problem

- The use of viral vectors for delivery in gene therapy is costly and can result in off-target activity
- Alternative techniques, such as electroporation, have technical limitations and toxicity concerns

Solution

Development Group

 Acoustofluidic platform which transiently renders target cells porous via acoustic INLE7 waves Specialized microchannels allow for highthroughput, high-efficiency delivery of biomolecular payloads Transfected Cell OUTLET Completed In Progress Alpha prototype Scale-up to multi Optimization of device transfection efficiencies (10) channel device Transfection of Jurkat cells, Partnering to validate platform human T-cells, CD34+ HSPCs with diverse cell types / cargo Paul Weiss, Steve Jonas, Ali Khadem-Don Kohn, MD Professor. PhD MD, PhD hosseini. Heme/Onc. Professor, Professor, PhD Technology Immunology & Pediatrics, Chemistry, Professor,

Heme/Onc

Bioengineering

Engineeering

UCLA Innovation Fund #1902:

Synthetic Exosomes for CNS Drug Delivery

ACHIEVEMENTS TO DATE

 Optimization of SE-IDUA synthesis in progress; to be completed when labs reopen

UPCOMING MILESTONES

- Iterative PK to demonstrate IDUA enzyme delivery to CNS and uptake in cells
- Delivery of CRISPR/Cas9 construct to CNS

Problem

- Inability to penetrate the blood-brain barrier (BBB) is a major impediment to the delivery of potential therapeutics for central nervous system diseases
 - Most small molecules and virtually all large molecule therapeutics do not cross the BBB

- Synthetic exosomes (SEs) encapsulating biomolecules as a linkage-free nanoparticle drug delivery system to cross the BBB
- Delivery of diverse biomolecular cargo
- Tunable size (~50-500nm), zeta potential, and structural flexibility enable permeation of the BBB

UCLA Innovation Fund #1903:

Small Molecule Npas2 Suppressors for Scar Prevention

ACHIEVEMENTS TO DATE

- Additional studies to support proposed disease mechanism
- Over-expression studies for target ID in progress

UPCOMING MILESTONES

- CRISPR KO studies for target validation
- Targeted screen to identify additional repurposing candidates

Problem

• Unmet need for scarless wound healing therapeutics that are both safe and effective

- ~100 M patients globally develop scars from elective and trauma operations each year

• Therapeutics targeting "fetal-like" wound healing and inflammation have had limited success

- Small molecule suppressors of clock gene Npas2 promote accelerated wound healing and scar reduction
 - Novel target Npas2 identified from genomic screen
 - Npas2 modulators identified in HTS of approved drugs
 - Potential expansion to other applications related to tissue fibrosis

UCLA Innovation Fund #1904:

Ketohexokinase Inhibitors for Targeted Cancer Therapy

ACHIEVEMENTS TO DATE

Additional *in vitro* target validation studies

UPCOMING MILESTONES

 Assess xenograft tumor growth in KHK WT vs. KHK KO mice

Problem

- Cancer cells reprogram metabolism to activate anabolic processes essential for tumor survival and growth
- Existing strategies for targeting cancer metabolism produce deleterious effects in healthy cells

Solution

- Novel ketohexokinase inhibitors selectively "starve" cancer cells by blocking key enzyme involved in fructose metabolism
- KHK is not essential in humans, presenting an opportunity for selective inhibitors with minimal impact on healthy cells

Chemistry

UCLA Innovation Fund #1905:

Broad Spectrum Antivirals to Treat Enteroviruses

ACHIEVEMENTS TO DATE

 Screening of top compounds against SARS-CoV-2 in progress

UPCOMING MILESTONES

Lead identification

Problem

- No approved antiviral therapeutics have activity against enteroviruses (10 15 M infections each year in US)
 - Serious complications and death can occur, particularly in vulnerable patients (infants, immunocompromised individuals)

Solution

Completed

SAR, MOA

investigation

Technology

Development Group

- Novel small molecule derivatives of pyrazolopyridine carboxamide (PPC) with broad spectrum activity against enteroviruses
 - Targets highly conserved viral protein (2C) for RNA replication
 - Low toxicity in preliminary mouse studies and favorable in vivo PK profile

Preliminary in vivo PK

Michael Jung, PhD Dist. Professor, Chemistry

Paul Krogstad, MD Professor, Pediatrics; Mol. & Medical Pharmacol.¹²

UCLA Technology Development Group

Thank You

Mary Sullivan, PhD Principal, UCLA Innovation Fund & New Ventures UCLA Technology Development Group

10889 WILSHIRE BLVD., SUITE 920 LOS ANGELES, CA 90095 310.367.1730 I mary.sullivan@tdg.ucla.edu CONNECT WITH US @UCLATDG

