IDENTIFICATION OF A PLATFORM FOR T CELL RECEPTOR RECOGNITION OF SPLICE VARIATION NEOANTIGENS IN GLIOBLASTOMA

Case: 2019-693

Robert Prins, Ph.D., UCLA Department of Neurosurgery
Robert Prins, Ph.D.

Associate Professor, Department of Neurosurgery

Associate Professor, Department of Molecular and Medical Pharmacology

Major research focus centers on understanding the immunology of malignant brain tumors and devising new immune-based therapies to treat these deadly tumors.
Executive Summary
High Level Overview

- Cancer is one of the most common diseases, globally, and is the second leading cause of death after cardiovascular diseases.
- Immune cells called T cells recognize foreign protein fragments, called antigens, in order to elicit an immune response.
 - Cancer cells produce alternatively spliced RNA, making peptide fragments unique to the cancer cells.
 - These protein fragments, called neoantigens, are ideal immunotherapy targets because they are found only in cancer cells.
- Knowledge of these alternative RNA splice variation allows for the development of immunotherapies and vaccines.

No current technology can accurately predict and recognize splice variations unique to tumors.
IRIS Innovates in Neoantigen Identification

- UCLA researchers have created a platform for the screening and identification of alternative mRNA splice variants unique to brain cancer.
- This platform is called IRIS: Isoform peptides from RNA splicing for Immunotherapy target Screening.
- IRIS is capable of screening multiple patient samples simultaneously in ‘group mode’ or can be performed in ‘personalized mode’ to identify targets for a specific patient sample.
- IRIS predictions have been validated by tumor-infiltrating lymphocytes, which recognized the predicted splice variant peptides.
Potential Applications of IRIS

TCR and CAR-T therapies for cancer
- Isolation
- Equip new T cell receptor (TCR)
- Activation
- Expansion
- Re-infusion

Neo-epitope peptide vaccines for the treatment of cancer

Identification of novel splice-variants in disease
- Exon skipping
- Mutually exclusive exons
- Alternative 5' donor sites
- Alternative 3' acceptor sites
- Introns retention
IRIS Exhibits Considerable Advantages

IRIS utilizes neoantigens for immunotherapeutic targeting, reducing off-target toxicities.

- Reduced Toxicities
- Reduced Immune Tolerance

Neoantigen Not Found in Healthy Cells

Conserved Antigens

Cancerous Cells
Normal Cells

IRIS can be applied to group data or personalized data
Developmental Timeline of Technology

Aug. 2018: Initial Conception

IRIS pipeline developed for identifying neoantigens in brain cancer

7 of 8 candidates were recognized by human glioma patient T cells

Top candidate selected to determine patient clonotyping

Bioinformatics tools developed to identify cancer-specific splicing changes

22 glioma patient samples used to generate candidate epitope list

Healthy patient T cells show very low recognition of epitopes

A few TCR clones dominate in recognition of the neoantigen
Market Opportunity
The global tumor-specific antigen market was $1.8 billion in 2018.

- Projected growth to $2.4 billion by 2023.
- Compound Annual Growth Rate (CAGR) of 6.2% by 2023.

The mutated antigen market, which consists of neoantigen immunotherapies, shows the largest market area in North America.

- CAGR of mutated antigen market is 6.5%.
- High growth is expected across all regions.
Competition in Glioblastoma Therapy

Chemotherapeutics (Systemic Application)

Temozolomide

Nitrosourea

Disadvantages

Targeted Therapeutics (Signaling Pathways)

Everolimus

Disadvantages

Complex Signaling Pathways

Many pathways overlap in healthy cells
Competition Analysis

High Patient Personalization

UCLA technology

Less Off-Target Effects

More Off-Target Effects

Nitrosourcea

Temolozide

Bevacizumab

Everolimus
Currently, neoantigen-based technologies are very new.

Major players in developing these therapies include:

- BioNTech
- Genentech
- Genocea Biosciences
- Neon Therapeutics
- Gristone Oncology
- Agenus
- Adaptive Biotechnologies
Commercialization Potential
Commercialization Potential

Neoantigens are being widely recognized as potential targets for next generation cancer therapeutics. However, current methods to identify neoantigens requires many patient samples, that are not readily accessible. Instead, IRIS allows minimal patient sample material, while providing accurate targets.

Methodology has been validated on clinical samples.

IRIS gives the ability to identify neoantigens based on splice variants and has been used to develop a novel T Cell Receptor Therapy for Brain Cancer.